Surface instabilities in shock loaded granular media

نویسندگان

  • K. Kandan
  • S. N. Khaderi
چکیده

The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker–Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles. © 2017 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuum-Type Stability Balloon in Oscillated Granular Layers

The stability of convection rolls in a fluid heated from below is limited by secondary instabilities, including the skew-varicose and crossroll instabilities. We observe a stability boundary defined by these same instabilities in stripe patterns in a vertically oscillated granular layer. Molecular dynamics simulations show that the mechanism of the skew-varicose instability in granular patterns...

متن کامل

Patterns in flowing sand: understanding the physics of granular flow.

Dense granular flows are often unstable and form inhomogeneous structures. Although significant advances have been recently made in understanding simple flows, instabilities of such flows are often not understood. We present experimental and numerical results that show the formation of longitudinal stripes that arise from instability of the uniform flowing state of granular media on a rough inc...

متن کامل

A model for ripple instabilities in granular media

We extend the model of surface granular flow proposed in [1] to account for the effect of an external ‘wind’, which acts as to dislodge particles from the static bed, such that a stationary state of flowing grains is reached. We discuss in detail how this mechanism can be described in a phenomenological way, and show that a flat bed is linearly unstable against ripple formation in a certain reg...

متن کامل

Dynamic behaviors of supersonic granular media under vertical vibration.

We present experimental study of vibrofluidized granular materials by high speed photography. Statistical results present the averaged dynamic behaviors of granular materials in one cycle, including the variations of height, velocity and mechanical energy of the center of mass. Furthermore, time-space distribution of granular temperature which corresponds to the random kinetic energy shows that...

متن کامل

Modeling and simulation of compressible multi-material interface instabilities

We aim to simulate the interactions at the material interface of two compressible media. These interactions are modeled by a single fully Eulerian system of conservation laws. The materials differ by their constitutive laws, that can reproduce the mechanical characteristics of fluids or elastic solid. We illustrate the model with simulations of shock waves impinging on undulated interfaces, gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017